breakplaining: Kinematik und Vektoren //2562

Nachdem ich neulich über Differentialgleichungen geschrieben habe, wollte ich heute eigentlich mit Newton-Mechanik weitermachen.
Aber ich glaube, es ist besser für die Verständlichkeit, wenn ich vorher noch einen kurzen Eintrag bringe, der die Grundlagen von Kinematik und Vektorrechnung zusammenfasst.
Da ich die darauf aufbauenden Einträge bereits vorgeschrieben habe, werde ich mich dann wohl an der einen oder anderen Stelle wiederholen. Sei’s drum.

Die Welt, so wie wir sie seit Jahrtausenden beobachten konnten, ist dreidimensional. D.h. jeder Ort lässt sich eindeutig durch drei geeignete, voneinander unabhängige Koordinaten beschreiben.
Wir können jeden Punkt als Vektor r = (x, y, z) schreiben. Üblicherweise kennzeichnet man einen Vektor durch einen kleinen Pfeil über dem Buchstaben (hier r), was ich aber mit plain Text nicht machen kann. Auch unterstrichene, fettgedruckte oder alte deutsche Buchstaben kommen als Symbole für Vektoren vor. Normalerweise schreibt man einen Vektor als Spalte mit den einzelnen Komponenten übereinander und das ganze in runden Klammern. Ich ziehe hier die Schreibweise als Zeilenvektor vor, die für die betrachteten Use Cases ausreicht.
Eine einzelne Komponente eines dreidimensionalen Vektors schreibt man meist mit x, y oder z als Subskript, oder mit einem Subindex von 1 bis 3 (wenn jetzt die ganz Schlauen einwenden, dass man ja mit 0 anfangen sollte zu zählen – ja, das macht man in der Viererschreibweise mit dem Index 0 für die Zeitkomponente, brauchen wir aber in der klassischen Mechanik nicht, sondern erst in der Relativitätstheorie).

Innerhalb unseres dreidimensionalen Raumes sind Bewegungen möglich. Unter einer Bewegung verstehen wir, dass sich mindestens eine der drei Ortskoordinaten (abhängig von der Zeit) verändert.
Die zeitliche Änderung des Ortes dr/dt = (dx/dt, dy/dt, dz/dt) = (vx, vy, vz) = v nennen wir Geschwindigkeit. Die zweite Ableitung des Ortes, bzw. die erste Ableitung der Geschwindigkeit ist die Beschleunigung a = (ax, ay, az).

Die Länge, bzw. den Betrag |r|eines Vektors berechnet man à la Pythagoras, indem man sämtliche Komponenten quadriert, diese Quadrate aufsummiert, und aus der Summe die Quadratwurzel zieht.
Vektoren lassen sich addieren oder subtrahieren, indem man jede einzelne Komponente addiert bzw. subtrahiert (ai = bi + ci, mit i Index 1 .. 3).
Vektoren lassen sich mit einem Skalar s multiplizieren, indem man jede einzelne Komponente mit diesem multipliziert (ai = s*bi).
Vektoren lassen sich auf zwei verschiedene Weisen miteinander multiplizieren. Beim Skalarprodukt werden die einzelnen Komponenten paarweise multipliziert und aufsummiert. Das Ergebnis ist ein Skalar, der das Produkt aus den Beträgen der Eingangsvektoren und dem Kosinus des von ihnen eingeschlossenen Winkels bildet. Skalarmultipliziert man einen Vektor mit sich selbst, erhält man das Quadrat seines Betrags.
Das Kreuzprodukt wie es aus der Schulmathematik bekannt ist, ist nur im dreidimensionalen Raum sinnvoll. Dabei werden auf bestimmte Weise die Einzelkomponenten über Kreuz miteinander multipliziert und voneinander abgezogen (a1 = b2*c3 – b3*c2, und analog zyklisch), so dass schließlich wieder ein (Pseudo-)Vektor herauskommt. Ich erspare euch weitere Details, sowie einen Exkurs auf das Levi-Civita-Symbol (auch bekannt als Epsilon-Tensor, obwohl es gar kein Tensor ist; hat auch nichts mit den Jeans zu tun). Der Ergebnisvektor steht auf beiden Eingangsvektoren senkrecht. Sein Betrag entspricht der Fläche des von den Eingangsvektoren aufgespannten Parallelogramms, bzw. dem Produkt ihrer Beträge mal dem Sinus des eingeschlossenen Winkels.

Bestimmt habe ich schon das eine oder andere Mal den Operator Nabla erwähnt. Nabla wird als Formelzeichen durch ein auf dem Kopf stehendes gleichseitiges Dreieck dargestellt, das durch einen Vektorpfeil gekrönt wird. Die Einzelkomponenten sind die partiellen Ableitungen nach den jeweiligen Ortskoordinaten.
Wendet man Nabla auf eine skalare Funktion f(x,y,z) an, so finden sich im Ergebnisvektor die partiellen Ableitungen dieser Funktion. Diese Anwendung von Nabla nennt man auch Gradient (grad).
Nabla lässt sich auf eine vektorielle Funktion (i.e. eine Funktion, die aus drei Komponenten besteht) anwenden. Bildet man das Skalarprodukt, erhält man ein skalares Feld. Die Skalarmultiplikation (streng genommen ist das keine Multiplikation im eigentlichen Sinn, wird aber komponentenweise analog berechnet) von Nabla mit einem Vektorfeld nennt man Divergenz (div), und sie veranschaulicht die Quellen und Senken des Vektorfeldes.
Ihr könnt es euch inzwischen bestimmt schon denken, dass es auch ein Kreuzprodukt von Nabla mit einem Vektorfeld gibt. Dieses wird als Rotation (rot) bezeichnet, und liefert einen Pseudovektor als Ergebnis, der die Wirbel des Vektorfeldes beschreibt.
Viel mehr über Vektoranalysis müsst ihr an dieser Stelle nicht wissen, vielleicht noch, dass die Integralsätze von Gauß und Stokes das mathematische Rüstzeug geben, mit Divergenz und Rotation weiterzuarbeiten.

Bevor euch der Kopf schwirrt von Begriffen, die ihr eigentlich nicht braucht, nur weil ich mal wieder vom Hundertsten ins Tausendste komme, belasse ich es bei diesen Grundlagen.

Über Anne Nühm (breakpoint)

Die Programmierschlampe.
Dieser Beitrag wurde unter Uncategorized abgelegt und mit , , verschlagwortet. Setze ein Lesezeichen auf den Permalink.

22 Antworten zu breakplaining: Kinematik und Vektoren //2562

  1. ronin schreibt:

    „indem man die Quadrate sämtlicher Komponenten quadriert“

    Tatsächlich?

    Gefällt 1 Person

    • Huch – da sind tatsächlich zu viele Quadrate! Das kommt davon, wenn man fast fertige Texte noch umformuliert. 🙄
      Ich werde es ändern.
      Danke für den Hinweis.

      Gefällt mir

    • Mika schreibt:

      Ich hab doch glatt die Berechnung geprüft und dachte, ich hätte alles verlernt. Meckern wollte ich nicht. Aber es war gut zur Übung. Ich durfte das mal für mehr als 3 Dimensionen ausrechnen. Der Prof meinte, das wäre zwar nicht praktisch anwendbar, aber eine gute Übung.

      Wäre Anne jetzt eine Geisteswissenschaftlerin, hätte sie auf die falsche Formel bestanden und dem Kritiker Diskriminierung vorgeworfen.
      Wer Mathe gelernt hat, kann den Fehler einfach zugeben. Analog sollten die Linken endlich Marx in den Müll werfen, denn der hat den Kapitalismus einfach nicht verstanden.

      Gefällt 1 Person

      • Hin und wieder soll es schon vorgekommen sein, dass ich absichtlich einen Fehler einstreue, um zu checken, ob die Leser auch angemessen kritisch aufpassen.

        Aber vielleicht ist das auch nur ein Gerücht.

        Gefällt mir

      • Plietsche Jung schreibt:

        Die Linken müssen erstmal in die Schule gehen oder ihr Studium zu Ende bringen. Da es selten der Fall ist, werden wir auch nicht von Mathematikern oder Geisteswissenschaftlern regiert.

        Gefällt mir

        • Mika schreibt:

          Der grüne Habeck hat Diplom und Doktor. Nutzt nur nix. Jeder Handwerker rechnet besser. Maurer und Zimmerleute kennen a2=b2+c2 im Schlaf. Linke wissen nicht was ein Dreieck ist. Gibts die auf Bermuda? Und Marx würde den Wert eines Dreiecks anhand der darin eingebrachten Arbeit errechnen. Mir wurde schon erzählt, man könne die Fläche von Dreiecken nicht berechnen, das geht nur mit Quadraten, gemeint waren Rechtecke. Da stehste da und guckst wie die Kuh, wenns donnert. Wenns erlaubt wäre, sollte man solche Leute standrechtlich füsilieren. Mir hat auch schon einer von den Linken erklärt, die Naturgesetze wären doch von Menschen gemacht, die könne man ja ändern. Die glauben wirklich, der Strom fließt wie Wasser von Plus nach minus und speichern kann man das im Netz. Ist wie ein Wasserturm, da ist ja auch Wasser oben drin. Irgendwann werde ich heilig gesprochen, weil ich trotz größter Versuchung noch keinen Mord begangen habe, ja nicht mal ne Tätlichkeit. Ich treffe solche Leute beruflich, nicht freiwillig.

          Gefällt mir

          • Plietsche Jung schreibt:

            Autsch … wenn Dummheit quietschen würde.
            Bildung ist der Schlüssel. Das hören wir jeden Tag. Warum wird es dann nicht besser ?

            Bildung ist der Schlüssel

            Ich habe einfach nur Angst, wenn solche Flachzangen an die Macht kommen. Ich schau mich schon um, in welches Land ich flüchten kann, ohne vom Regen in die Traufe zu kommen.

            Gefällt mir

            • Mika schreibt:

              Ey, die sind an der Macht!

              Spahn ist Bankkaufmann, oder so. Mit dem kannste über Vordrucke reden, da kennt er sich aus. Merkel kommt mehr so von der Propaganda. Von der Leyen würde ich mir nicht den Puls messen lassen – ich kenne die live. Wenn ich nen Blinddarm raus hole, hat der Patient bessere Chancen. Hab mal Viehzeugs geschlachtet. Dorf eben. Würde ich aber nicht ohne Not tun, weil ich das nicht wirklich kann. Ich kann ne Cessna holprig fliegen, Wäre ich in der Regierung, dürfte ich Space Shuttle fliegen. Oder mindestens jeden Airbus. Kann ich zwar nicht, aber egal, ich kann es richtig schreiben, das reicht.
              Scholz ist Schmalspuranwalt und für Finanzen zuständig. Lachhaft. Ich wette, der kann den Zins nicht im Kopf rechnen. Ich kann das besoffen in der Nacht. Ich bin jetzt echt kein Überflieger. Solide Ausbildung und Verantwortung für bis zu 150 Mitarbeiter. 10 Jahre Kleinunternehmer. Von meiner Sorte gibt es sehr viele. Aber absolut keinem aus dieser Regierungstruppe würden wir unsere kleinen Klitschen anvertrauen. Da stehen nämlich Kunden, die was für ihr Geld wollen und Mitarbeiter, die auf ihr Gehalt angewiesen sind. Bei Daimler als Cheffe kann ich 1000 Leute entlassen, hab ja Body Guards. Hier aufm Dorf geh ich an die Reserven, weil ich sonst Ärger bekomme. Und ich finde das richtig.

              Wenn Annalena mein Abi hätte, würde sie sich als Universalgenie fühlen. Ich hab nur ein ganz normales 83er Abi mit 3 Leistungskursen. Sport und Religion, Kunst und Singen waren nicht zugelassen. Okay, Sport hätte ich 15 Punkte gemacht, dafür in Singen nur 1. Gnadenpunkt. In Religion bekam man 11 oder 12 Punkte, immer. In Kunst hätte ich Glück haben müssen.

              Gefällt 1 Person

            • Plietsche Jung schreibt:

              Denk dran, es wird noch schlimmer kommen, denn wir kleines unwichtiges Land retten doch die Welt !!. Die anderen sind halt zu doof dazu. Das ist wie die Sache mit dem Geisterfahrer.

              Wir sind, glaub ich, sehr ähnlicher Meinung. Aber egal, mit wem ich im Freundes- oder Bekanntenkreis spreche, alle denken so.

              Ich frage mich, woher diese 25+% kommen. Das ist mir echt ein kleines Rätsel. Aber ich wohne auch nicht in einem linksgrünen Yuppi-Viertel.

              Gefällt mir

            • Mika schreibt:

              Die fälschen die Wahlen. Ich kenne hier im Ort mehrheitlich AFD Wähler – aus Protest. Trotzdem haben SPD und CDU 70%. Das kann gar nicht sein. 55% Briefwahl, obwohl keiner hier mehr als 300 Meter zum Wahllokal hat. Es werden Wahlhelfer gesucht, aber ich darf nicht. Wird Gründe haben.

              Wohin würdest du auswandern? Ich überlege auch….

              Gefällt mir

            • Plietsche Jung schreibt:

              Ich denke an Österreich oder Italien. Holland ist zu langweilig, Frankreich/Belgien hab ich Sprachprobleme, hab nur 2 Jahre Franz gehabt. UK ist noch ne Option, weil sie nicht in der EU sind. Rumänien/Bulgarien sind noch Entwicklungsland und die Sprache wirklich eine Zumutung. Spanien ist mir zu warm, the Nordics zu kalt und zu dunkel.

              Weiter weg ginge auch, aber ein E-Visum ist nicht so einfach 🙂

              Gefällt mir

  2. Mika schreibt:

    @PJ

    ÖsiLand ist nicht so doll. Ich habe da ne Ex Geliebte. Wir sind immer noch dicke Freunde. Die wollen uns nicht und die Sprache ist eine Zumutung. In Holland kannst du nix essen und Italien ist irgendwie arrogant. Belgier sind blöd, aber mit gutem Essen. In France hab ich 10 Jahre gelebt. Ist ein Polizeistaat geworden. Zu meiner Zeit hat man geschmiert und hatte seine Ruhe. Geht nicht mehr. Voll Nazi dort. Ich wohne an der Grenze, ich krieg das mit. England war ich auch ne Weile, die sind sehr höflich, aber mehr nicht. Kein gutes Essen.
    Rumänien hat ne einfache Sprache. Sie kochen so halbwegs vernünftig und feiern gerne. Bulgarien kenn ich nicht. Armenien wäre was. Die Frauen dort sind boaaaaaaa ey. Ich kenne zwei davon. Die sind der Wahnsinn. Und ich kenne die ohne Westler Bonus, also nix mit Brieftasche. Nur falls du Single bist. Die stehen total auf nordische Typen und übertreffen jedes Schneewittchen. Und das sind keine Nutten wie in Thailand.
    Aber nen Plan hab ich trotzdem noch nicht.

    Gefällt mir

  3. Sempersolus schreibt:

    Diese Mathematik ist einfach grundlegend, danke für die kurze Rekapitulation – obwohl es für den Alltagsgebrauch natürlich intuitivere und einfachere Methoden gibt, Senken (z. B. in einem annähernden Halbkugelvolumen, wie etwa einem Cranium) zu erkennen.

    Gefällt 1 Person

  4. Sempersolus schreibt:

    p.s.
    Don´t panic!

    Gefällt 1 Person

  5. Pingback: breakplaining: #TheoPhys #Mechanik – Newton //2567 | breakpoint

  6. Pingback: „Die Natur hat keine Kanten“ oder „Auf der Suche nach dem rechten Winkel“ //2573 | breakpoint

  7. Pingback: breakplaining: #TheoPhys #Mechanik – Lagrange //2593 | breakpoint

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.